RAM Math Circle - Chennai Synopsis for September 7 2025

This session was a review of modular arithmetic for the new students who have joined our math circle.

Start by sorting integers based on the remainder obtained after division by a fixed number as follows:

- 1. Fix a number, say n = 3. What remainders are possible when one divides a number by 3? Observation: When dividing by 3, there are 3 possible remainders, namely 0, 1, and 2.
- 2. Repeat above exercise for n = 4, 5, 6 etc.
- 3. Generalise to other numbers: When dividing by n, there are n possible remainders, namely $0, 1, 2, \ldots, (n-1)$.
- 4. Imagine there are n baskets labelled $0, 1, 2, \ldots, (n-1)$. Pick any integer, divide it by n and see what remainder is obtained. Then imagine dropping it in the basket labelled by that remainder.

Terminology: We will say that two numbers are *congruent modulo* n if they get dropped into the same basket.

Examples:

- 1. $5 \equiv 3 \pmod{2}$
- $2. 12 \equiv 7 \pmod{5}$
- 3. $8 \equiv 15 \pmod{7}$
- 4. $15 \equiv 27 \pmod{3}$

Now that we have some idea about this sorting, let us introduce the mathematical language used to express this idea and work with it.

Definition: Let a, b and n be integers. We say that a is congruent to b modulo n if n divides (b-a), that is (b-a) is a multiple of n.

To avoid writing so many words all the time, we use

Notation: $a \equiv b \pmod{n}$ to mean a is congruent to b modulo n. We can quickly check how this applies to the earlier examples -

Examples:

- 1. $5 \equiv 3 \pmod{2}$ since 2 divides (5-3)
- 2. $12 \equiv 7 \pmod{5}$ since 5 divides (12-7)
- 3. $8 \equiv 15 \pmod{7}$ since 7 divides (15 8)
- 4. $15 \equiv 27 \pmod{3}$ since 3 divides (27 15)

It is not too difficult to see why this definition works, that is **why** a **and** b **belong to the same basket (modulo** n) **if** n **divides** (b-a). Here is a proof:

Recall the division algorithm: given any two integers m and n, we can find (quotient) q and (remainder) r such that

$$m=nq+r$$

and the remainder lies between 0 and (n-1) (that is, $0 \le r < n$.)

Applying the division algorithm to the pairs a, n and b, n tells us that we can find numbers q_1, q_2 and r_1, r_2 satisfying

$$a = nq_1 + r_1, 0 \le r_1 < n$$

$$b = nq_2 + r_2, 0 \le r_1 < n.$$

Then

$$b-a = nq_2 + r_2 - (nq_1 + r_1)$$
$$= n(q_2 - q_1) + r_2 - r_1$$

If a and b leave the same remainder when divided by n, then $r_1 = r_2$, so $r_2 - r_1 = 0$, which gives $b - a = n(q_2 - q_1)$. So (b - a) is a multiple of n.

Conversely, if n divides (b-a), then r_2-r_1 must be zero, i.e. $r_1=r_2$ which means a and b belong to the same basket (labelled by r_1 or r_2).

