

Senior batch

We continued to work on Euler's totient function, picking up from the proofs left incomplete last time. Then we worked on some geometry problems related to circles.

1 Divisibility

Notation: For any positive integer n , the notation $\Phi(n)$ denotes the number of positive integers less than and coprime to n . Last time we proved the following statement:

Suppose $(d, n) = 1$. Then for the set $S = \{a, a + d, a + 2d, \dots, a + (n-1)d\}$, number of numbers in S coprime to n is $\Phi(n)$.

Using the above, let's try to prove the following result:

Result 1.1 Suppose $(m, n) = 1$. Then $\Phi(mn) = \Phi(m)\Phi(n)$.

- Let $1 \leq k \leq mn$. Then $(mn, k) = 1$ if and only if $(k, m) = (k, n) = 1$ since $(m, n) = 1$.
- Write the mn numbers from 1 to mn in a grid as follows:

$$\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & \dots & m \\ m+1 & m+2 & m+3 & m+4 & \dots & 2m \\ 2m+1 & 2m+2 & 2m+3 & 2m+4 & \dots & 3m \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ (n-1)m+1 & (n-1)m+2 & (n-1)m+3 & (n-1)m+4 & \dots & nm \end{array} \right)$$

- If k is any number such that $(k, m) = 1$, then every entry in the k^{th} column is coprime to m .
- Now the k^{th} column has _____ elements which are coprime to n .
- So to choose the entries of the grid which are coprime to both m and n we can first choose the k which is coprime to m and then in the k^{th} column we will find _____ entries coprime to n .

The chosen entries will now be coprime to both m and n .

- Thus the total number of entries (that is numbers between 1 and mn) coprime to both m and n is _____.

1.1 Exercises

The Fundamental Theorem of Arithmetic (aka the Prime Factorisation Theorem)

For any integer $n > 1$, there exist distinct primes p_1, p_2, \dots, p_k such that

$$n = p_1^{t_1} p_2^{t_2} p_3^{t_3} \cdots p_k^{t_k}$$

where t_1, t_2, \dots, t_k are integers ≥ 0 .

1. If n_1, n_2, \dots, n_k are mutually coprime, that is, any two numbers in this list are coprime to each other, then $\Phi(n_1 n_2 \cdots n_k) = \Phi(n_1)\Phi(n_2)\cdots\Phi(n_k)$.
2. How many numbers are coprime to 99?
3. Create a grid of numbers as in the proof above to compile the list of numbers coprime to 99.
4. Write a formula for $\Phi(n)$ where n is any positive integer.

2 Circles

1. When two circles cut each other, then prove that the line joining their centres bisects the common chord at right angles.
2. A chord PQ of a circle cuts a concentric circle at $P'Q'$. Prove that $PP' = QQ'$.
3. Prove that two chords AB and CD of a circle bisect each other if and only if both of them are diameters.
4. If $PQRS$ is a parallelogram whose vertices lie on a circle then PR and QS are diameters of the circle.
5. Two circles cut each other at A, B . If PAQ and RBS are parallel straight lines meeting the circles again at P, Q, R, S , then prove that $PQ = RS$.

Junior batch

With new batch of students in math circle, we introduced the definitions of prime and composite numbers and explored how to determine whether a number is prime through logical reasoning and case-by-case analysis. Using 103 as our main example, students tested divisibility by small primes and discussed an important logical observation: if a number n is divisible by a number a , then it must also be divisible by every factor of a ; therefore, if n is not divisible by a factor of a , it cannot be divisible by a itself. We provided proof of this fact and used it to reduce unnecessary checks when determining primality. Students also learned that to check whether a number n is prime, it suffices to test divisibility only by prime numbers less than or equal to the smallest integer greater than \sqrt{n} . Applying these ideas, we confirmed that 103 is prime, and students were given following practice problems:

- (a) How many two-digit prime numbers are there?
- (b) How many three-digit prime numbers are there?
- (c) Is 237421 a prime number?
